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Using Graduation to Modify the Estimation of Lee–Carter Model for
Small Populations

Jack C. Yue,1 Hsin-Chung Wang,2 and Tzu-Yu Wang3
1Department of Statistics, National Chengchi University, Taipei, Taiwan, Republic of China
2Department of Statistical Information and Actuarial Science, Aletheia University, New Taipei City, Taiwan, Republic
of China
3Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan, Republic of China

Many mortality models, such as the Lee–Carter model, have unsatisfactory estimation in the case of small populations.
Increasing population size is a natural choice to stabilize the estimation, if we can find a larger reference population that has a
mortality profile similar to that of the small population. Aggregating historical data of the small populations is a fine candidate
for the reference population. However, it is often not feasible in practice and we need to rely on other reference populations. In
this study, we explore whether graduation methods can be used if the mortality profile of a small population differs from that of
the reference population. To explore the appropriate occasion to use graduation methods, we create several mortality scenarios
and similarity types between small and reference populations. We propose combining the graduation methods and mortality
models, either graduating mortality rates first or applying the mortality model first, and determine whether they can improve the
model fit. We use computer simulation to determine whether the proposed approach has better mortality estimation than
the Lee–Carter model and the the Li–Lee model. We found that the Li–Lee model always has smaller estimation errors than the
Lee–Carter model, and the proposed approach has smaller estimation errors than the Li–Lee model in most cases.

1. INTRODUCTION
Since people are living longer, life planning for the elderly has become a popular issue around the world. Among all topics,

the study of the elderly’s mortality rates and health receives a lot of attention. However, human life expectancy has been
increasing rapidly, and in many countries (especially those with small populations and a rapid increase in longevity), data
about the elderly have been limited in quantity and available period, which makes modeling mortality rates of the elderly diffi-
cult. For example, the famous Lee–Carter model (Lee and Carter 1992) does not fit well in the case of small populations
(Booth et al. 2006) and the estimates of age-related parameters ax and bx tend to be biased. Wang et al. (2018) found that the
bias is especially noticeable when the population size is 200,000 or less. For the Cairns–Blake–Dowd (CBD) model (Cairns
et al. 2006), Chen et al. (2017) found that the uncertainty of parameter estimation is related to the sample size.

The example shown here demonstrates the influence of small populations. We first use Taiwan’s female mortality to derive
the parameters of the Lee–Carter model. Suppose that the mortality rates follow the Lee–Carter model and the population
structure is the same as that of Taiwan females. We consider different population sizes, ranging from 10,000 to 5 million, and
then simulate the random numbers of deaths, and then we apply these to the Lee–Carter model. To emphasize the influence of
small populations, we only show the estimation results for the cases of population sizes not more than 200,000. Figure 1 shows
the average biases of estimates of parameters ax and bx via singular value decomposition. The biases of ax estimates are espe-
cially noticeable and always larger than 0. In contrast, the biases of bx estimates can be positive or negative and seem to be
around 0 on average, when the sample size is larger than 100,000. Note that the average biases are calculated based on 1,000
replications; the data period is 1996–2015, and the age range is 0–99 years in the format of 5-year age groups (20 groups).

Address correspondence to Hsin-Chung Wang, Associate Professor, Department of Statistical Information and Actuarial Science,
Aletheia University, New Taipei City, 25103, Taiwan, Republic of China. E-mail: au4369@mail.au.edu.tw

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uaaj.
This article has been republished with minor changes. These changes do not impact the academic content of the article.

1

North American Actuarial Journal, 0(0), 1–11, 2019
# 2019 Society of Actuaries
ISSN: 1092-0277 print / 2325-0453 online
DOI: 10.1080/10920277.2019.1650288

http://crossmark.crossref.org/dialog/?doi=10.1080/10920277.2019.1650288&domain=pdf&date_stamp=2019-11-22
http://www.tandfonline.com/uaaj
http://www.tandfonline.com


The biased estimates in the case of small populations probably are the main reason why many recent studies focus on modi-
fying mortality models for small populations. Intuitively, increasing the sample size is the most efficient way to stabilize the
parameter estimation of mortality models, and including the mortality data from neighboring areas (or areas with similar mor-
tality profiles) is a natural choice. For example, Li and Lee (2005) proposed referencing the mortality data from populations
with similar mortality improvements, namely, the coherent Lee–Carter model, to reduce the estimation errors of the
Lee–Carter model. Ahcan et al. (2014) suggested augmenting the size of small population by including the average mortality
from neighboring populations. Wang et al. (2018) proposed aggregating 10 to 20 years of historical data from the target popu-
lation as the reference group. Of course, the Bayesian approach is another possibility for increasing the sample size, as in the
Bayesian modification of the Lee–Carter model by Wi�sniowski et al. (2015). In a sense, most studies consider increasing the
sample size of small populations, but it is difficult to judge which populations have mortality profiles similar to that of the tar-
get population.

Dealing with estimating mortality rates of small populations is not new in the insurance industry, and actuaries often apply
smoothing methods to reduce the fluctuations of age-specific mortality rates in constructing life tables. In fact, the graduation
methods originally are designed to handle the problem of insufficient data, particularly for the elderly. Many traditional gradu-
ation methods (e.g., moving weighted averages and the Whittaker method) enlarge the sample size by including data from
adjacent ages with similar mortality rates. If the fluctuations of mortality rates are reduced at each age, then the estimation of
mortality model will be more stable as well. In other words, it is possible to apply the idea of graduation to stabilize the estima-
tion of mortality models.

Thus, to deal with the estimation of mortality models in the case of small populations, we propose combining the graduation
methods and mortality models (either graduate the mortality rates first or apply the mortality model first) and determining
whether this can improve model fit. In particular, we want to explore whether the graduation methods can be used if the mor-
tality profile of a small population differs from that of the reference population. We use computer simulation to check whether
the proposed approach has better mortality estimation than the Lee–Carter model (1992) and the Li–Lee model (2005).

FIGURE 1. Bias of Parameter Estimates of the Lee–Carter Model.
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However, unlike other studies of small populations, we do not define the mortality measures for deciding which populations
are similar to the small population. Instead, we create several mortality scenarios and similarity types between small and refer-
ence populations. Note that the mortality scenarios are similar to those in Wang et al. (2012) and the similarity types are
defined via mx, ax, and bx, which are discussed in Section 4. We introduce the graduation methods and mortality models in
the next two sections.

2. METHODOLOGY
The idea behind the proposed approach is similar to that of using graduation methods to adjust irregular fluctuations in

observed mortality rates. However, unlike the usual graduation methods, such as the moving average, the proposed adjustment
of mortality rates is based on a reference population, similar to Bayesian graduation. Basically, we propose two graduation
methods: the partial standard mortality ratio (SMR) and the Whittaker method. We introduce the proposed approach in this
section and evaluate its performance in the next section.

The partial SMR (Lee 2003) is a modification of the SMR, which is used to smooth mortality rates of small populations via
the information from a large population, referencing the value of the SMR. The SMR, which is often used in epidemiology, is
defined as follows:

SMR ¼
P

x dxP
x ex

¼
P

x dxP
x Px � mR

x

, (1)

where dx and ex are the observed and expected numbers of deaths at age x for the small population, Px is the population size of
age x for the small population, and mR

x is the central death (or mortality) rate of age x from the reference population. The SMR
can be treated as a mortality index. If the SMR is larger (or smaller) than 1, this usually indicates that the small population has
a higher (or lower) overall mortality rate than the reference population.

The numbers of age-specific deaths in the small population often are not high, and the observed mortality rates fluctuate a
lot and sometimes are even 0. The SMR can provide a possible guideline to fine-tune these mortality rates. For the partial
SMR, the graduated mortality rates satisfy

vx ¼ u�x � exp
dx � ĥ

2 � log ðdx=exÞ þ ð1�dx=
P

dxÞ � log ðSMRÞ
dx � ĥ

2 þ ð1� dx=
P

dxÞ

0
@

1
A, (2)

or the weighted average between raw mortality rates and SMR, where ĥ
2
is the estimate of parameter h2 for measuring the

heterogeneity (in mortality rates) between the small and reference populations, and u�x is the mortality rate for age x in the
reference population.

The idea behind the partial SMR is similar to a credibility-weighted estimate for calculating the future premium (Klugman
et al. 2012), where the estimate is a linear combination of recent observed loss and related reference information. The
Bayesian graduation methods (e.g., Kimeldorf and Jones 1967) function in a similar format, and the updated (or posterior) esti-
mates are also a linear combination of new observations and past experience (London 1985). The key is to choose appropriate
weights and the proper reference population. Of course, the reference population should have larger population size in order to
have smooth values of u�x :

To achieve satisfactory results, Lee (2003) suggests the weight of partial SMR:

ĥ
2 ¼ max

P�
ðdx�ex � SMRÞ2 �P

dx
�

SMR2 �P
e2x

, 0

0
@

1
A

(3)

The larger ĥ
2
is, the larger is the difference in age-specific mortality rates (i.e., mortality heterogeneity, or larger dissimilarity

in shape between the age-specific mortality curve of the small population and that of the larger population). When the number of
deaths is smaller, there will be greater weight from the large population, and the graduated mortality value equals SMR� u�x
when the number of deaths is 0. Lee mentioned that using the weight function ĥ

2
in Equation (3) usually has smaller mean

square error (MSE) in mortality estimation. However, the derivation of ĥ
2
is through some sorts of approximations, and it cannot

guarantee to have the smallest MSE.
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Alternatively, we can also use the Whittaker graduation method to stabilize the mortality rates of a small population, with a
modification similar to the partial SMR. First, we calculate the age-specific ratio of mortality rates from the small population
to those from the reference population, or define sx ¼ ux=u�x , where ux is the observed mortality rate of age x for the small
population. Next, we apply the Whittaker graduation to the mortality ratio sx via minimizing the following objective function:

M ¼
X
x

wxðrx�r�xÞ2 þ h
X
x

ðDzr�xÞ2, (4)

where rx is the graduated mortality ratio, wx is the weight (or exposure) of age x, h is a smoothing parameter, and D is the
difference operator, or Df(x) ¼ f(xþ 1) – f(x). Finally, the graduated mortality rates of small population are sx � u�x : The choice
of parameter h is the key, along with the choice of reference population, in applying the Whittaker ratio, namely, graduation.

Selecting the reference population is critical in applying the proposed graduation methods. This is also the case for applying
the coherent Lee–Carter model, and choosing the appropriate group of coherent populations is important. In practice, selecting
the populations with similar mortality profiles is not easy, and a natural choice is the whole nation (or nearby areas) if the
small population is a subset of the nation. But the mortality differences within a country can be huge, even for neighboring
cities. For example, in Taiwan, the largest difference in life expectancy between counties is more than 10 years (Taipei City
versus Tai-tung County in the 2014 Taiwan Abridged Life Tables). It would be questionable to use the population of Taipei
City as the reference group for Tai-tung County. In the next section, we use computer simulation to evaluate the proposed
approach, with emphasis on the similarity between the small and reference populations.

3. GRADUATING MORTALITY RATES VIA THE REFERENCE POPULATION
As mentioned previously, choosing the appropriate reference population is important. However, instead of searching for the

perfect reference population, we want to use the similarity level between the small and reference populations to judge whether
we should adjust the mortality rates of the small population via the reference population. In this section, we first evaluate the
performance of graduation methods using various similarity levels. In the next section, we use graduation for integrating the
parameter estimation of the Lee–Carter model.

Suppose that there are seven scenarios for the mortality ratio sx between the small and reference populations, as shown in
Figure 2. Various scenarios are designed to evaluate the effect of different graduation methods. The three scenarios in the left
panel indicate that the mortality rates of the small and reference populations are similar, and we expect that partial SMR would

FIGURE 2. Seven Mortality Ratio Scenarios.
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be a good choice for graduation. In contrast, the other four scenarios in the right panel assume that the mortality rates of the
small and reference populations are different. For these four cases, partial SMR might not be a good choice.

We use a computer simulation to evaluate the performance of partial SMR and Whittaker graduation. First, we use the
mortality data of 1996–2015 Taiwanese females, with age range 0–99 years in the format of 5-year age groups of 0–4, 5–9,
10–14, … , 95–99 years (20 groups), to obtain parameters (ax, bx, and kt) of the Lee–Carter model. Second, we adopt the age
structure of the 1996–2015 Taiwanese female population as the underlying population and the population sizes are 10,000,
20,000,:::, 2 million, 5 million. Third, we simulate the numbers of deaths from a Poisson distribution for both the small and
reference populations under seven mortality scenarios. Then we calculate raw mortality rates and apply them into the gradu-
ation methods, the Lee–Carter model, and the Li–Lee models. The preceding simulation process is repeated for 1,000 times.

There are many possible treatment combinations, and we use two examples as a demonstration. Suppose the size of the
small population is 100,000 or 200,000, and the size of reference population is 2 million or 5 million. Also, the comparison cri-
terion is based on the mean absolute percentage error (MAPE),

MAPE ¼ 1
n

Xn
i¼1

jYi � Ŷ ij
Yi

� 100%, (5)

where Yi and Ŷ i are the observed and predicted values for observation i, i¼ 1, 2, … , n. According to Lewis (1982), a predic-
tion with MAPE less than 10% is treated as highly accurate, and a MAPE greater than 50% is considered inaccurate.

Since the simulation results are similar for the cases where the reference population is larger than 2 million, we only show
the cases for 2 million. Tables 1 and 2 give the simulation results of cases where the small population is 100,000 and 200,000,
for 1,000 simulation replications. Other than raw data and two proposed graduation methods, we also consider the case of
Whittaker graduation with the observed mortality rates as a control group. For the Whittaker ratio and Whittaker graduation
methods, the parameter wx is the exposure of age x, and the parameter h is average exposure of all ages.

As expected, the graduation methods generally have smaller MAPEs than those without graduation (except for increasing and
reverse V-shape scenarios). For the first three scenarios, in which the mortality rates of small and reference populations have the
same proportion for all ages, the SMR can provide a very good approximate estimate of this proportion. Thus, Table 1 and Table 2
show that the MAPEs of the partial SMR are much smaller than for other methods. Heuristically speaking, taking the results in
Table 1 as a demonstration, it is like treating the reference population as the small population when we apply the partial SMR, so
the MAPEs of the raw data are about 2 times of those for the partial SMR.

For the other four mortality scenarios, where the mortality rates of small and reference populations are not very similar, the
MAPEs of the Whittaker ratio generally are the smallest. It seems that the Whittaker ratio is more robust than the partial SMR
and the graduation results are not influenced much by different mortality scenarios. This probably can explain why the
Whittaker method is still a popular choice of graduation methods.

Of course, we can conduct exploratory data analysis (EDA) to evaluate whether the mortality rates of small and reference
populations are similar. For example, the age-specific mortality ratios in Figure 2 are among the EDA tools we can use. We
suggest using the partial SMR if they look like the first three scenarios, but we are skeptical of using the partial SMR for the
last four scenarios. In fact, we experimented with using different values of mortality ratios for the last four scenarios, such as
changing the ratios of the increasing scenario from 0.5–1.5 to (1 – a)–(1 þ a) for 0 < a< 1. We found that the MAPEs of the
partial SMR are smaller than those of Whittaker ratio if a � 0.4. In other words, if the small and reference populations are not

TABLE 1
MAPEs of Graduation Methods (100,000 vs. 2 Million)

sx¼ 0.8 sx¼ 1 sx¼ 1.2 Increase Decrease V Reverse V

Raw 28.95% 26.80% 25.08% 28.96% 26.73% 27.28% 28.24%
Whittaker 26.73% 24.77% 23.50% 28.39% 23.60% 27.15% 25.67%
Whittaker
ratio

15.73% 14.95% 14.30% 19.46% 18.36% 15.54% 17.44%

Partial
SMR

12.80% 12.43% 12.08% 47.65% 20.12% 22.15% 25.33%

Note: The cells with gray background are those with the smallest MAPEs.
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very different, then the partial SMR is preferred. We should continue exploring whether we can modify the stochastic mortality
models via graduation methods in the next section.

4. MODIFICATION OF THE LEE–CARTER MODEL
In this section, we continue the discussion of applying the graduation methods to modify the Lee–Carter model. We first

use the proposed approach to smooth the mortality rates and then apply the graduated mortality rates to fit the Lee–Carter
model. We assume that the age-specific mortality rates of small and reference populations satisfy the Lee–Carter model. In
addition, three different mortality settings are applied to regulate the relationship between the small and reference populations,
via mortality ratio, ax, and bx: The purpose behind these settings is to explore the influence of similarity in the mortality rates
and their trend between the small and reference populations. For example, the mortality rates look similar now but their
improvement rates may not. This would cause mortality discrepancy and possible bias in the parameter estimation.

As for the proposed approach, we can either graduate raw mortality rates first and then apply the mortality model, or apply
the mortality model first and then graduate model-fitted mortality rates. The graduation methods considered are the partial
SMR and Whittaker ratio, and the mortality models are the Lee–Carter and Li–Lee models. In addition to the Lee–Carter and
Li–Lee models, we also compare the proposed approach to the method of aggregate historical data (20 years) of small popula-
tion (Wang et al. 2018). We use computer simulation to evaluate whether the proposed approach can improve the model fit.
We only use the case where the size of small population is 100,000 and that of the reference population is 2 million as a dem-
onstration, since there are quite a few treatment combinations (order of mortality graduation, graduation methods, and mortal-
ity models). For example, for the case of partial SMR plus Li–Lee model, we first simulate numbers of deaths for small and
reference populations. Then we use the partial SMR method to smooth the mortality rates of small population, using the infor-
mation of mortality rates from the reference population. Finally, we apply the Li-Lee model to the graduated mortality rates of
small population and observed mortality rates of reference population.

Again, we use the age structure of the Taiwanese female population as the underlying population. The model comparison is
based on the MAPE as well, based on 1,000 simulation runs. Because there are many treatment combinations, we only show
the results of approaches for graduating raw mortality rates first and then of applying the mortality model. The results of
approaches for applying the mortality model first and then graduating model-fitted mortality rates are given in the Appendix.
We first consider the case of mortality ratio sx ¼ ms

x=m
R
x , where ms

x and mR
x are the central mortality rates of small and refer-

ence populations. The MAPEs of the proposed methods and the reference group are shown in Table 3 and in Table A.1 in the
Appendix. Note that the last rows of Table 3 have two different reference populations. The reason is that there is only one set
(or “single year”) of mortality data for the reference population after data aggregation, and thus the Li–Lee model cannot be
used. As an alternative, we need to rely on another reference population after applying graduation methods. A similar rule
applies to the last two rows of Table A.2. As expected, the MAPEs of the Lee–Carter and Li–Lee models are obviously smaller
than those of raw observations, since the mortality rates satisfy the Lee–Carter model. In addition, the MAPEs of the Li-Lee
model are always smaller than those of the Lee–Carter model. It is interesting to note that the Li–Lee model is a fine modifica-
tion to the Lee–Carter model, even though the reference population has quite different mortality rates. A possible explanation
is that the relationships between the mortality rates of small and reference population are fixed in this setting, that is, two popu-
lations have the same bx and jt, and it is like fitting the Li–Lee model using both the small and reference populations.

The MAPEs of graduation methods vary quite a lot. For the first three mortality scenarios, using the partial SMR to graduate
first and then applying the Lee–Carter model has the smallest MAPEs, but the MAPEs for the last four scenarios are almost the

TABLE 2
MAPEs of Graduation Methods (200,000 vs. 2 Million)

sx¼ 0.8 sx¼ 1 sx¼ 1.2 Increase Decrease V Reverse V

Raw 21.42% 19.69% 18.34% 21.54% 19.52% 19.99% 20.92%
Whittaker 21.79% 20.54% 19.59% 23.03% 19.64% 23.66% 20.27%
Whittaker
ratio

12.89% 12.15% 11.58% 15.01% 14.83% 12.50% 14.04%

Partial
SMR

11.58% 11.20% 10.87% 43.10% 17.40% 16.99% 21.77%

Note: The cells with gray background are those with the smallest MAPEs.
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largest. In contrast, applying the mortality model (Lee–Carter or Li–Lee model) first and using the Whittaker ratio graduation out-
performs the Lee–Carter model. The treatment combination Whittaker ratioþLi–Lee model has the smallest MAPEs for the last
four mortality scenarios, with noticeable improvements (at least 30%) over the Lee–Carter and Li–Lee models in all mortality
scenarios. It seems that the graduation methods can improve the mortality estimates of small populations if they are
chosen properly.

Following the same concept, we also set up seven mortality scenarios for the parameter ax to describe the relationship
between the small and reference populations. Let sx ¼ asx=a

R
x , where asx and aRx are the intercept parameters of the Lee–Carter

model for the small and reference populations. The MAPEs of various model estimations are shown in Table 4 and in Table
A.2 in the Appendix, and the results for the setting of different ax (same bx and jt) are very different, compared to those in
Table 3. We can see that the MAPE values of all methods (except the aggregate methods) are especially larger for the scen-
arios of Increasing and Reverse V. It seems that the discrepancy in the intercept ax causes noticeable influence for the param-
eter estimation of the small population. This suggests that if the mortality profiles of small and reference populations differ a
lot, we should apply the mortality models and graduation methods with care.

The simulation for the case of different bx (same ax and jt) is conducted similarly and the results are shown in Table 5 and
in Table A.3 in the Appendix. Let sx ¼ bsx=b

R
x , where b

s
x and bRx are the age-related slope parameters of the Lee–Carter model

for the small and reference populations. Again, the Li–Lee model always has smaller MAPEs than the Lee–Carter model in all
seven bx scenarios. It seems that even if the small and reference populations have quite different bx, using the idea of a

TABLE 3
MAPEs of Graduation and Lee–Carter Model (Mortality Ratio: sx ¼ ms

x=m
R
x )

Reference 0.8 1 1.2 Increase Decrease V Reverse V

Raw — 28.95 26.80 25.08 28.96 26.73 27.28 28.24
Lee–Carter — 16.48 14.62 13.61 18.45 14.91 14.68 17.95
Li–Lee 2 million 13.94 12.74 12.05 15.77 11.99 13.24 14.22
Partial SMRþLee–Carter 2 million 4.92 4.69 4.46 39.49 23.86 20.59 22.62
Whittaker ratioþLee–Carter 2 million 9.08 8.72 8.59 13.67 16.56 10.73 11.33
Partial SMRþLi–Lee 2 million 5.06 4.79 4.59 39.50 23.78 20.57 22.72
Whittaker ratioþLi–Lee 2 million 8.65 8.34 8.16 12.11 16.48 10.74 10.33
Partial SMRþLee–Carter Aggregate 10.47 9.79 9.22 10.51 9.57 9.69 10.27
Whittaker ratioþLee–Carter Aggregate 8.97 8.62 8.51 8.84 8.99 9.19 8.58
Partial SMRþLi–Lee Aggregate/ 2 million 9.77 9.20 8.74 10.05 8.81 9.13 9.68
Whittaker ratioþLi–Lee Aggregate/ 2 million 10.91 10.07 9.53 11.34 9.93 10.32 10.77

Note: Cells with gray background are those with a smaller MAPE than the Li–Lee model.

TABLE 4
MAPEs of Graduation and Lee–Carter Model (Different ax: sx ¼ asx=a

R
x )

Reference 0.8 1 1.2 Increase Decrease V Reverse V

Raw — 66.01 26.76 15.33 317.47 17.66 27.85 173.52
Lee–Carter — 54.05 14.63 8.26 311.48 10.25 14.56 168.31
Li–Lee 2 million 50.24 12.77 7.51 304.14 8.20 13.06 161.25
Partial SMRþLee–Carter 2 million 57.07 9.44 19.72 1198.31 8.37 96.21 411.76
Whittaker ratioþLee–Carter 2 million 40.21 9.03 20.80 297.34 36.62 31.90 178.11
Partial SMRþLi–Lee 2 million 57.04 9.28 19.64 1198.84 9.35 96.61 411.51
Whittaker ratioþLi–Lee 2 million 39.25 8.60 20.44 292.73 36.83 30.85 175.71
Partial SMRþLee–Carter Aggregate 16.66 9.81 6.82 24.80 7.16 9.79 17.56
Whittaker ratioþLee–Carter Aggregate 20.64 10.69 6.44 27.33 6.30 10.54 20.01
Partial SMRþLi–Lee Aggregate/ 2 million 15.84 9.21 6.69 24.61 7.00 9.55 17.49
Whittaker ratioþLi–Lee Aggregate/ 2 million 19.60 10.11 6.39 27.39 7.31 10.91 19.89

Note: Cells with gray background are those with a smaller MAPE than the Li–Lee model.

GRADUATION USE IN ESTIMATION OF LEE–CARTER MODEL 7



coherent group to increase the population size still can reduce the estimation error of mortality rates for the small populations.
This indicates that increasing the population size is a feasible approach, even though the populations included do not have a
mortality profile identical to that of the small population.

Unlike the case of different ax, the proposed approaches have fine performance in all scenarios. The partial
SMRþLee–Carter model has the smallest MAPEs, and it outperforms the Lee–Carter and Li–Lee models in all cases, signifi-
cantly reducing the estimation errors. Other methods of applying the graduation method first also have smaller MAPEs than
those of the Lee–Carter and Li–Lee models, but the error reduction is not as significant. This is very similar to those in Table
3 and very different from those in Table 4. Intuitively, as in the regression analysis, we think that the slope parameter bx should
play a more important role than the intercept parameter ax, but the MAPEs of computer simulation show different information.

In summary, we found that the mortality graduation can improve the mortality estimation of the Lee–Carter model (and the
Li–Lee model as well), if proper graduation methods are selected. For example, the method of the Whittaker ratioþLi–Lee
always has smaller MAPEs than the Lee–Carter and Li–Lee models in all simulation cases. However, the selection of treat-
ment combination (i.e., graduation vs. mortality model) depends on the characteristics of mortality rates. We suggest conduct-
ing exploratory data analysis for the mortality rates, and the information, such as mortality ratios, can provide a useful
guideline to choose the appropriate graduation methods.

5. CONCLUSION AND DISCUSSION
Living longer is a common phenomenon of human beings in the 21st century, and the study of mortality rates is a popular

research topic in many fields, such as demography and actuarial science. Mortality models are a common tool for modeling
the mortality rates, but the model estimation tends to be distorted by small sample size. In addition to larger variance, parame-
ters’ estimates for the small populations often are biased. Many modifications have been proposed to deal with the case of a
small population. Three examples are the coherent Lee–Carter model by Li and Lee (2005), the Bayesian approach by Cairns
et al. (2011), and the SAINT model by Jarner and Kryger (2011). Most of these modifications use mortality information from
another population(s) as a reference to improve the model fitting.

Including another population as a reference is like increasing the sample size, and this probably is the most intuitive and
effective way to deal with the model estimation for small populations. The idea of increasing sample size has been used by
actuaries to construct life tables as well, and many graduation methods can be treated as increasing sample size from those
with a similar mortality profile. In this study, we adapt the idea of graduation and propose a modification of the Lee–Carter
model, also with information from a reference population. Two types of graduation methods are used in this study: the partial
SMR (Lee 2003) and the Whittaker ratio.

We consider three settings of relationship between small and reference populations, sx ¼ ms
x=m

R
x , sx ¼ asx=a

R
x , and sx ¼

bsx=b
R
x , and use computer simulation to evaluate the proposed approach. In general, the partial SMR modification has smaller

estimation errors (with respect to MAPE) than the Lee–Carter and Li–Lee models, if the small and reference populations have
similar mortality profiles. When the mortality rates of small and reference populations are not similar, the Whittaker ratio is a

TABLE 5
MAPEs of Graduation and Lee–Carter Model (Different bx: sx ¼ bsx=b

R
x )

Reference 0.8 1 1.2 Increase Decrease V Reverse V

Raw — 26.83 26.72 26.81 26.76 26.78 26.80 26.79
Lee–Carter — 14.93 14.69 14.12 15.28 13.95 14.20 14.67
Li–Lee 2 million 12.99 12.75 13.30 13.32 13.34 13.38 13.30
Partial SMRþLee–Carter 2 million 4.69 4.68 4.85 6.48 6.25 5.65 5.81
Whittaker ratioþLee–Carter 2 million 8.99 8.88 8.75 9.22 8.80 8.74 8.90
Partial SMRþLi–Lee 2 million/2 million 5.36 4.79 5.32 6.50 6.36 5.96 6.12
Whittaker ratioþLi–Lee 2 million/ 2 million 8.72 8.41 8.90 9.37 9.03 8.98 9.17
Partial SMRþLee–Carter Aggregate 9.03 9.76 10.64 9.42 12.10 11.36 9.52
Whittaker ratioþLee–Carter Aggregate 10.86 10.78 10.65 10.51 10.88 10.83 10.41
Partial SMRþLi–Lee Aggregate/2 million 8.27 9.17 10.21 9.14 11.41 10.69 9.08
Whittaker ratioþLi–Lee Aggregate/2 million 10.10 10.13 10.73 10.52 10.83 10.79 10.42

Note: Cells with gray background are those with a smaller MAPE than the Li–Lee model.
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possible alternative choice of graduation methods. We think the graduation methods are a feasible approach for dealing with
small populations and can effectively reduce the estimation errors of the Lee–Carter model.

We should continue exploring the graduation methods and use them to modify the mortality models. However, we only con-
sider various settings of age-related parameters ax and bx for the Lee–Carter model and do not consider the time-related param-
eter jt. There would be problems if the small and reference populations have different functional forms of parameter jt (e.g.,
quadratic for the small population and linear for the reference population). Of course, the interactive effects might also exist if
two or three parameters (ax, bx, and jt) are different, and this can distort or even ruin the effect of graduation.

Also, there can be more than one reference population, and, of course, it is impossible that these populations are perfectly
homogeneous in terms of mortality rates. It is more realistic to expect that some populations and the small population have
similar mortality rates at younger ages, while other populations and the small population are similar at older ages. Then the
concept of variable selection can be applied. We may develop similarity measures and use them to judge whether a reference
population should be included. Further, it would be even better (but more difficult) if the selection of appropriate reference
populations is age dependent.

Modifying the graduation methods for mortality models (other than the Lee–Carter mode) is also a possible direction for
future study. If the parameters of mortality models are additive, such as in the age–period–cohort model, we can use the gradu-
ation methods to adjust the parameter estimation one parameter at a time. However, if the parameters are not additive, the situ-
ation is expected to be more complicated. For example, the cohort modification to the Lee–Carter model by Renshaw and
Haberman (2006) contains one component of age with time and one component of age with cohort. These two components are
not linearly dependent and can cause problems of adjusting the age parameters associated with time and cohort.
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APPENDIX. ERRORS OF FIRST APPLYING MORTALITY MODEL AND THEN GRADUATION

TABLE A.1
MAPEs of Lee–Carter Model and Graduation (Mortality Ratio: sx ¼ ms

x=m
R
x )

Reference 0.8 1 1.2 Increase Decrease V Reverse V

Raw — 28.95 26.80 25.08 28.96 26.73 27.28 28.24
Lee–Carter — 16.48 14.62 13.61 18.45 14.91 14.68 17.95
Li–Lee 2 million 13.94 12.74 12.05 15.77 11.99 13.24 14.22
Lee–Carterþ partial SMR 2 million 15.07 14.46 13.96 33.58 32.46 22.70 25.55
Lee–CarterþWhittaker ratio 2 million 13.49 12.42 11.90 16.16 15.22 12.77 15.25
Li–Leeþ partial SMR 2 million 13.07 12.58 12.12 31.29 31.22 21.02 23.92
Li–LeeþWhittaker ratio 2 million 10.29 9.44 9.05 12.86 11.80 10.21 11.22
Lee–Carterþ partial SMR Aggregate 13.50 12.59 12.03 13.91 12.99 12.38 14.26
Lee–CarterþWhittaker ratio Aggregate 14.36 12.73 11.95 15.85 12.98 12.76 15.41
Li–Leeþ partial SMR 2 million/Aggregate 10.38 9.78 9.44 10.89 9.47 9.96 10.24
Li–LeeþWhittaker ratio 2 million/Aggregate 10.95 9.78 9.15 12.40 9.18 10.07 11.07

Note: Cells with gray background are those with a smaller MAPE than the Li–Lee model.

TABLE A.2
MAPEs of Lee–Carter Model and Graduation (Different ax: sx ¼ asx=a

R
x )

Reference 0.8 1 1.2 Increase Decrease V Reverse V

Raw — 66.01 26.76 15.33 317.47 17.66 27.85 173.52
Lee–Carter — 54.05 14.63 8.26 311.48 10.25 14.56 168.31
Li–Lee 2 million 50.24 12.77 7.51 304.14 8.20 13.06 161.25
Lee–Carterþ partial SMR 2 million 62.10 14.45 21.39 1224.10 10.35 87.38 464.70
Lee–CarterþWhittaker ratio 2 million 43.83 12.33 20.09 301.41 38.42 31.60 180.15
Li–Leeþ partial SMR 2 million 60.16 12.57 20.57 1204.93 9.17 85.38 452.22
Li–LeeþWhittaker ratio 2 million 42.27 9.44 18.96 293.59 37.39 30.78 176.28
Lee–Carterþ partial SMR Aggregate 19.25 12.59 8.55 28.43 10.48 13.10 22.10
Lee–CarterþWhittaker ratio Aggregate 24.21 12.77 7.49 31.35 9.03 12.93 24.21
Li–Leeþ partial SMR 2 million/Aggregate 15.36 9.15 6.84 24.69 7.80 9.93 17.67
Li–LeeþWhittaker ratio 2 million/Aggregate 21.46 9.86 6.00 27.84 6.19 10.39 20.18

Note: Cells with gray background are those with a smaller MAPE than the Li–Lee model.
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TABLE A.3
MAPEs of Lee–Carter Model and Graduation (Different bx: sx ¼ bsx=b

R
x )

Reference 0.8 1 1.2 Increase Decrease V Reverse V

Raw — 26.83 26.72 26.81 26.76 26.78 26.80 26.79
Lee–Carter — 14.93 14.69 14.12 15.28 13.95 14.20 14.67
Li–Lee 2 million 12.99 12.75 13.30 13.32 13.34 13.38 13.30
Lee–Carterþ partial SMR 2 million 10.66 10.97 10.81 12.07 11.04 11.03 11.47
Lee–CarterþWhittaker ratio 2 million 12.35 12.50 12.14 13.06 11.95 12.06 12.57
Li–Leeþ partial SMR 2 million 7.61 7.41 8.12 8.44 8.48 8.36 8.27
Li–LeeþWhittaker ratio 2 million 9.79 9.47 10.03 10.30 10.22 10.12 10.14
Lee–Carterþ partial SMR Aggregate 11.67 12.61 13.15 12.57 13.76 13.47 12.30
Lee–CarterþWhittaker ratio Aggregate 12.67 12.85 12.52 13.28 12.26 12.48 12.78
Li–Leeþ partial SMR 2 million/Aggregate 8.39 9.11 10.58 8.87 11.13 10.73 9.02
Li–LeeþWhittaker ratio 2 million/Aggregate 10.07 9.84 10.43 10.58 10.51 10.49 10.46

Note: Cells with gray background are those with a smaller MAPE than the Li–Lee model.
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